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  الخلاصة

"ستيفن" و قيمنا طرق الحل من خلال تطبيقها على أنواع  ةناقشنا الحل العددي لمسائلفي هذا البحث 

وقمنا  ئل, مع وصف لطبيعة المسئلة قيد البحث , و كذلك الحل التحليلي لها .مختلفة من هذه المسا

المنتهية ذو الرتبة العالية  تنظام الفروقا ( وهوHOCأسلوب)الحل و استقراره  مستخدمين  بمناقشة

 .قيد البحث لةئالمسمبينين طبيعة أسلوب الحل من خلال التطبيق المباشر على  المتراص

 
ABSTRACT 

 
In this paper, the numerical solution of Stefan problem was discussed , assess their effectiveness over the 

range of Stefan type problems and containing a general statement of the Stefan problem, the description of a 

test problem and its analytic solution are also given. The Hoc finite difference formulation to find the 

numerical solution is outlined, with it stability, and the problems associated with its direct implementation 

are highlighted via a test problem. .  

 

Keyword:  Stefan problem, Height order compact (HOC), Parabolic P.D.E 

1-Introduction 

The Stefan problem, free boundary problem, in one space dimension can be described as follow: 

In a region  s(t)y0,0tt)(y,Ω  , a function u is sought as the solution of the linear heat 

equation 

 infuu yyt . 

 The initial temperature u(y,0) and t)(0,u y are prescribed. The free boundary s(t)y   is 

defined by the condition 0t)u(s(t),  , on the one hand and the additional 

condition 0t)(s(t),us yt  , on the other. The melting (or freezing) of a block of ice, reducing the 

water in the dam, is a two examples of physical interpretation.  

The numerical formulation of Stefan problem which we considered is as follow: 
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Problem Pv: Given 00 T , and g(y) for (0,1)Iy   with 0)0( g , 0g(1) . Find 

 ),(),(  yvs such that  

0)( ts  for 00 Tt  , 1)0( s ,           (1.1) 

0 vvyy in  )(0,0),( 0  syTy  ,         (1.2) 


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





0)),((

0),0(





tsv

v y
for 00 T ,          (1.3) 

)()0,( ygyv  for Iy ,            (1.4) 

and in addition  

0)),((  


sv
d

ds
y for 00 T .          (1.5) 

We can reduce the above problem to one with fixed boundaries, by introducing the new space 

variable ysx )(1  , the corresponding transformation of  defined by  

)(2 


s
dt

d
 0)0(  ,            (1.6) 

lead for the function ),(),( yvtxu  to the problem : 

Problem Pu: Find u such that  

),1( tuxuu xtxx   in  TtIxtyQ  0,),( ,   









0),1(

0),0(

tu

tux
for Tt 0  ,  

)()0,( xgxu  for Ix ,   













1)0(

),1(

s

tu
dt

ds
x for Tt 0 ,           (1.7)  

hence Tt  corresponds to 0T .The original Stefan problem is now is split into a non-linear 

PPDE initial boundary value problem ,for a fixed domain ,and two ordinary differential equations  

(1.6) and (1.7). 

*Department of Mathematics, College of Science, University of Baghdad.   E-male Reyadh_Naoum@Yahoo.com. 

**Department of Mathematics, College of Science, University of Baghdad.   E-male saadqasim75@Yahoo.com. 

 

 

mailto:Reyadh_Naoum@Yahoo.com
mailto:saadqasim75@Yahoo.com


Diala , Jour  ,   Volume , 27 , 2008 
 

 

  225 

For two dimensional problem, the moving boundary has the form ),( txsy  , and in the 

associated coordinate transformation the independent variables x and t are retained but y  is 

replaced by  

),( txs

y
 ,             (1.8) 

thus for the one phase problem with the governing PPDE  

2

2

2

2

y

u

x

u

t

u














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with boundary condition are given on 0x , 1x , 0y , and on ),( txsy  there are two 

condition, one specifying u and the other give the relation between the velocity of the moving 

boundary and the normal derivative of u at this boundary [1]. The transformation (1.8) lead the 

new equation 
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To find the numerical solution, we can use explicit, implicit, scheme such as forward difference in 

time with central difference in space.   

2. Model Equation     

Heat conduction through a one-dimensional region involving a phase change at a single 

point, )(ts , (ie. a boundary moving with time) is described by  
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where  1  i  for   s(t) x  0  and  2  i   for  s(t) x  , along with initial conditions defined at 

 0  t  and boundary conditions specified at   x 0 and  Lx  or as x .At the phase change 

boundary,  s(t)x  , 

muuu  21              (2.2) 

and  

  
dt

tds
L

x

u
k

x

u
k

tsts

)(
1

)(

1

)(

2 








           (2.3) 

where mu is the phase change temperature and L is the latent heat involved in the phase change, 

these equations plus the relevant initial and boundary conditions constitute the definition of a 

single boundary Stefan problem, and providing the solution for (x, t), u1 (x, t), u2 and  s(t) . 

In a solidification problem, for example, region 1 may represent that fraction of the body 

in the solid state with region 2 defining the liquid portion. In this case the latent heat L  is 

negative and  s(t) is positive whilst for melting problems these signs are reversed, using this 

notation, a suitable test problem, involving freezing, has been described by Goodrich [7] and is 

outlined below  

0mu ; 2),(  tu ; 

2)0,( xu   )0( x ; 4),0( tu  )0( t  

5102 kki ; 7105.2  cci  

1 i ; 
710100  L   

The analytic solution to this type of problem, [8], is given by  

21
1 )(2)( tts  , 

where 
ii

i
i

c

k


  , )(ts is the position of the boundary at time t , is a real constant,  The exact 

solution of a point 25cm from the surface is shown as curve (a) in Figure (3.1). The characteristic 

"knee" as the temperature passes through the phase change  

3. NUMERICAL SOLUTION 

We will allow the phase to change and occur over a temperature range, this is a physically 

acceptable since many of the practical problems involving a phase change fall into this category, 

Having what is called a 'mushy' region. In this case if the grid size step is constrained so 

that more than one grid point always falls into the phase change region then the rogue plateaus 

disappear. This is because the behavior of the grid point temperatures adjacent to a grid point 

neighboring and being approached by the phase change region, is always monotonically 

decreasing ( until it enters the phase change region it self ) . A number of papers have been 

published which effectively do this through the basic scheme  [1],[2],[9]. If the initial temperature 
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of the region is the phase change temperate then the above condition is always satisfied and an 

accurate numerical solution can be generated. 

There are three main practical, methods to find the numerical solution, of the above 

problem, which effectively spread the phase change over a given region. 

 

 

 

 

3.1-Szekely and Lee's Method 

Considered the enthalpy H(T) of the material under consideration (ie. the sum of the 

sensible and latent heats) as a continuous function of temperature [6]. Thus, equation (2.1) may be 

rewritten as 

t
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with, 
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)()/(
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uuuufuuL

uuuuc

du

dH m
,          (3.2) 

 

where 1u and 2u  define the region within which the phase change occurs. Note that 

equation (3.2) ensures that the heat gained on passing the phase change region is )( 12 uucL  . If 

we  use  explicit finite difference approximation then equation (3.1) become  

 j
i

j
i

j
i

j
i

j
i uuuRHH 11

1 2 
   ,          (3.3) 

where  /kR  and dudH / is evaluated at each time step when k  is constant. This 

problem was solved by a method developed by Szekely and Lees, [4], with using a mesh size  

 12.5cm  x  and   sec3600  t  . Twenty distance steps were used and dudH /  was found from a 

suitable finite difference representation of equation (3.2) with the half mushy range  , taking the 

values 
610 

,  0.5 and C1.50
. The cooling curves for the point  25cm  x   are shown in Figure 

(3.2). When 
610  the cooling curve is smooth and is similar to a problem whose latent heat is 

zero (i.e. no phase change). The curve for 5. is a combination of jumps and plateauz, whereas 

the curve for 5.1  approaches the smoother behavior expected. From these results it would 

seem that the size of the mushy region strongly influences the stability of the numerical solution. 

3.2-Meyers method 

This method was developed by Meyer [7], where he use implicit scheme to find the numerical of 

the problem Meyer uses equation (2.1)with  H(u) a piecewise continuous function given by 
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 ,         (3.4) 

We note that the rise in H across the phase change region is L , so strictly speaking the 

function  H(u) is not the enthalpy. Equation (2.1) may be approximated , using implicit finite 

difference approximation , by  

02)()(( 11
1  
 j

i
j

i
j

i
j

i
j

i uuuuHuHR , where tkxR  /2        (3.5) 

. 

equation (3.5) can be expressed in matrix form as 

0)(  uAu                (3.6) 

where )N1 .u ., . .  ,u ( u  is the vector of nodal values, A is the matrix of nodal temperature 

coefficients and )(u  is a vector with elements )()(( 1  jj uHuHR  .The above nonlinear system 

equations (3.6) ,is solved by using the successive relaxation iterative technique [3]. 

Meyer demonstrated the strength of his method by solving a two-dimensional problem 

involving a well insulated chamber with its initial temperature below the phase change 

temperature [5].  

By Observed Meyer's problem the semi-plateau occurring in the temperature plot some 

time after the point has passed through the phase change. This semi-plateau may be directly 

associated with its neighboring points passing through the phase change, these observations call 

into question of the accuracy and stability of Meyer's method and can be seen as in the test 

problem using 5.1,01. . The results, illustrated in curves (a) and (b) of Figure(3.3), confirm 

that   is a critical parameter in obtained stable solutions. Curve (c) in Figure(3.3) calculated 

for 01. and  5  x  shows only a , slight improvement with a smaller x-step. 

We observe that, there still remains a demand for an accurate, reliable and flexible 

technique to describe phase changes which may occur either at a point or over a range.An 

algorithm is needed for calculating the position of moving boundary/region accurately , so we 

modified , and developed , an algorithm to find the numerical solution of  equations (3.1)and (3.2) 

we will use HOC finite difference method to find the numerical solution of the above problem . 

3.3-Reyadh and Saad method 

We will develop the method in which we will use the HOC scheme developed in [10] to 

find the numerical solution ,where the truncation errors of compact difference operators for 

second derivatives is of order 4 that is  
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2

x
  in (3.7), is the standard central difference operator for second derivative of u .To find the 

forth derivatives we differentiate (3.1) with respect to x  
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Thus the resulting high-order scheme of (3.1)  
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In our method we use the backward Euler finite difference operator with the continuous 

function of temperature H defined by Szekely and Lee's in equation (3.2) i.e.  
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so that the backward Euler HOC finite difference form of (3.1) has the form  
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The above scheme can be simplified to be 
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The derivative dudH /  was approximated by using forward, backward ,finite difference 

operators and thus equation (3.2) with the half mushy range  , taking the values
610 

, 

 0.5 and C1.50
.   
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In Figure(3.4) we plot the solution of equation (3.8) and we can see the improvement in 

the solution, aseptically at the mushy range 610 , where the cooling curve is smooth and 

explain the behavior of the solution better than the solution of Szekely using the same half mushy 

range   , we also use the forward Euler finite difference, implicit method, to find the numerical 

solution to equation (3.1)with the function  H(u)  defined by Meyer in equation (3.4) i.e. 
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From equation (3.8) and if  we use the implicit HOC finite difference operator, equation 

(3.1) may approximated in implicit form as 
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this can be simplified to be 
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where BA, and C are given in (3.9) 

The system of non-linear equation (3.11) can solved by using safe guarding Newton 

method ,[5] ,and the numerical solution of (3.11) is plotted in Figure (3.5), We can conclude that 

the smooth behavior of cooling curve at the mushy range 1.0 , is more accurate than the 

cooling curve given by Meyer method at the same mushy range and one can notice the closeness 

between the exact and the numerical solution  

 

Figure 3.1  The exact and numerical solution of a point 25cm of test problem 
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Figure 3.2  The numerical solution of a point 25cm by Szelely  Method 

 

 

 

 

 

 

 

 

 

Figure 3.3  The numerical solution of a point 25cm by Meyer Method 
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Figure 3.4  The numerical solution of a point 25cm using the backward HOC finite 

difference method   

 

 

 

 

 

 

 

 

Figure 3.5  The numerical solution of a point 25cm using the forward HOC finite difference 

method   
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