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Hoc FINITE DIFFERENCE SCHEME ToO FIND THE NUMERICAL SOLUTION
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ABSTRACT

In this paper, the numerical solution of Stefan problem was discussed , assess their effectiveness over the
range of Stefan type problems and containing a general statement of the Stefan problem, the description of a
test problem and its analytic solution are also given. The Hoc finite difference formulation to find the
numerical solution is outlined, with it stability, and the problems associated with its direct implementation

are highlighted via a test problem. .
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1-Introduction

The Stefan problem, free boundary problem, in one space dimension can be described as follow:
In a regionQ = {(y,t)|t >0,0<y< s(t)}, a function uis sought as the solution of the linear heat

equation
U —u, =finQ.
The initial temperature u(y,0)and u,(0,t) are prescribed. The free boundary y=s(t) is
defined by the conditionu(s(t)t)=0, on the one hand and the additional

conditions, +Uu,(s(t),t) =0, on the other. The melting (or freezing) of a block of ice, reducing the
water in the dam, is a two examples of physical interpretation.

The numerical formulation of Stefan problem which we considered is as follow:

YyYy



Diala , Jour , Volume, 27, 2008

*Department of Mathematics, College of Science, University of Baghdad. E-male Reyadh Naoum@Yahoo.com.
**Department of Mathematics, College of Science, University of Baghdad. E-male saadgqasim75@ Yahoo.com.

Problem P": GivenT,>0, and g(y) for yel=(0,1) withg'(0)=0, g(1)=0. Find
{s(z),v(y,7)}such that

s(t)>0 forO<t<T,, s(0)=1, (1.1)
vy, —V, =0in Q:{(y,r)|0<r<T0,O< y<s(r)}, (1.2)
0,7)=0

vy (0.9) for 0<z<T,, (1.3)
v(s(t),z) =0

v(y,0)=g(y)for yel, (1.4)

and in addition
ds
d—T+Vy(S(T),T)=Of0r0<TSTO. (1.5)

We can reduce the above problem to one with fixed boundaries, by introducing the new space
variable x=s™(z)y, the corresponding transformation of r defined by

dr

e s?(z) 7(0)=0, (1.6)

lead for the function u(x,t) =v(y,z)to the problem :
Problem P": Find usuch that
Uy — U, = Xu, (Lt) in Q= {(y,t)|x el0<t ST},

u,(0,t)=0

for O<t<T
u@@,t)=0

u(x,0)=g(x)for xel,

ds
E__ux(l’t) for 0<t<T, (1.7)
s(0)=1

hence t=T corresponds to 7 =T,.The original Stefan problem is now is split into a non-linear

PPDE initial boundary value problem ,for a fixed domain ,and two ordinary differential equations
(1.6) and (1.7).
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For two dimensional problem, the moving boundary has the formy =s(x,t), and in the
associated coordinate transformation the independent variables xand tare retained but y is
replaced by

Ly
S~ (1.8)

thus for the one phase problem with the governing PPDE

2 2
6—u:a—lj+a—g,0<x<l, 0<y<s(xt).
ot ox° oy
with boundary condition are given onx=0,x=1, y=0, and on y=s(x,t)there are two
condition, one specifying uand the other give the relation between the velocity of the moving
boundary and the normal derivative of uat this boundary [1]. The transformation (1.8) lead the
new equation

2 2 2
a—u:6—2+ a—quca—uereé—u O0<x<1, 0<¢ <1, (1.9
ot ox oxo§  o¢ OX
2 2
where bz—z—Z%, c=i2+b—, eza—2 Y +E ] and the new boundary condition are
s° dx s° 4 ox“\s/) slot

obtained ,for example the condition g—z =0on x=0bhecomes

u_y dsou_
X s oxod

on x=0.

The velocity of the moving boundary is specified to be —Z—i, thus if £ =1in the new plane we

have

2
o__1 1+(§) ou (1.10)
ot S ox) |o¢
To find the numerical solution, we can use explicit, implicit, scheme such as forward difference in
time with central difference in space.

2. Model Equation

Heat conduction through a one-dimensional region involving a phase change at a single
point, s(t), (ie. a boundary moving with time) is described by

0 ou ou
k=] |=pck — 2.1
ax( 1 ax iJ pl [ | 6)( ) ( )
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where i=1for O<x<s(t)and i=2 forx>s(t), along with initial conditions defined at

t=0 and boundary conditions specified at x = 0 and X = Lor asx — o .At the phase change
boundary, x = s(t),

U =u, =U, (2.2)
and
ou ou ds(t
ko—| -k—| = Pll—ﬁ (2.3)
X5y X5y dt

where u,, is the phase change temperature and L is the latent heat involved in the phase change,

these equations plus the relevant initial and boundary conditions constitute the definition of a
single boundary Stefan problem, and providing the solution for u,(x, t), u,(x, t), and s(t).

In a solidification problem, for example, region 1 may represent that fraction of the body
in the solid state with region 2 defining the liquid portion. In this case the latent heat L is
negative and s(t)is positive whilst for melting problems these signs are reversed, using this

notation, a suitable test problem, involving freezing, has been described by Goodrich [7] and is
outlined below

U, =0;u(ewo,t)=2;
ux,00=2 (x=>0);u(0,t)y=-4 (t>0)
ki =k =2x10°;¢, =c=2.5x10"
pi=p=1; L=100x10’
The analytic solution to this type of problem, [8], is given by

s(t) = 2A(xt)"?,

where «;, :L, s(t) is the position of the boundary at time t, Ais a real constant, The exact
i

solution of a point 25cm from the surface is shown as curve (a) in Figure (3.1). The characteristic

"knee" as the temperature passes through the phase change

3. NUMERICAL SOLUTION

We will allow the phase to change and occur over a temperature range, this is a physically
acceptable since many of the practical problems involving a phase change fall into this category,

Having what is called a 'mushy’ region. In this case if the grid size step is constrained so
that more than one grid point always falls into the phase change region then the rogue plateaus
disappear. This is because the behavior of the grid point temperatures adjacent to a grid point
neighboring and being approached by the phase change region, is always monotonically
decreasing ( until it enters the phase change region it self ) . A number of papers have been
published which effectively do this through the basic scheme [1],[2],[9]. If the initial temperature

Yy



Diala , Jour , Volume, 27, 2008

of the region is the phase change temperate then the above condition is always satisfied and an
accurate numerical solution can be generated.

There are three main practical, methods to find the numerical solution, of the above
problem, which effectively spread the phase change over a given region.

3.1-Szekely and Lee's Method

Considered the enthalpy H(T) of the material under consideration (ie. the sum of the

sensible and latent heats) as a continuous function of temperature [6]. Thus, equation (2.1) may be
rewritten as

o(,0u dH ou
— 1= |=p——, 3.1
ax( axj L du ot 3D
with,

c usu.;u>u
aH _ mE=t (3.2)
du |L/(u, —uy)f(u) u, <u<u,

where u,and u, define the region within which the phase change occurs. Note that

equation (3.2) ensures that the heat gained on passing the phase change region isL+c(u, —u,) . If
we use explicit finite difference approximation then equation (3.1) become

HI = HJ + R, —2u) +ul,), (3.3)

where R=kA/pand dH/duis evaluated at each time step when k is constant. This

problem was solved by a method developed by Szekely and Lees, [4], with using a mesh size
Ax=12.5cm and At =3600sec . Twenty distance steps were used and dH /du was found from a
suitable finite difference representation of equation (3.2) with the half mushy range ¢ , taking the

values 107°,0.5 and1.5°C. The cooling curves for the point x=25cm are shown in Figure

(3.2). When £=10"° the cooling curve is smooth and is similar to a problem whose latent heat is
zero (i.e. no phase change). The curve for ¢ =.5is a combination of jumps and plateauz, whereas
the curve for £=1.5 approaches the smoother behavior expected. From these results it would
seem that the size of the mushy region strongly influences the stability of the numerical solution.

3.2-Meyers method

This method was developed by Meyer [7], where he use implicit scheme to find the numerical of
the problem Meyer uses equation (2.1)with H(u) a piecewise continuous function given by
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cu usu,—¢
HUu)=<H(U, —&)+LU-u,+&) U, —e<u<u, +¢ , (3.4)
Hu,+é&)+c,(u—-u,+¢&) u=u, +¢&

We note that the rise in H across the phase change region isL, so strictly speaking the
function H(u) is not the enthalpy. Equation (2.1) may be approximated , using implicit finite

difference approximation , by

R'(HU)-H@u ™ —ul,+2u) —u}, =0, where R" = pAX® / kAt (3.5)

equation (3.5) can be expressed in matrix form as
Au +¢(u)=0 (3.6)

where u=(u, ,...,.uy) is the vector of nodal values, Ais the matrix of nodal temperature
coefficients and ¢(u) is a vector with elements R*(H (u') - H (u’™) .The above nonlinear system
equations (3.6) ,is solved by using the successive relaxation iterative technique [3].

Meyer demonstrated the strength of his method by solving a two-dimensional problem
involving a well insulated chamber with its initial temperature below the phase change
temperature [5].

By Observed Meyer's problem the semi-plateau occurring in the temperature plot some
time after the point has passed through the phase change. This semi-plateau may be directly
associated with its neighboring points passing through the phase change, these observations call
into question of the accuracy and stability of Meyer's method and can be seen as in the test
problem using £ =.01, 1.5. The results, illustrated in curves (a) and (b) of Figure(3.3), confirm

that ¢ is a critical parameter in obtained stable solutions. Curve (c) in Figure(3.3) calculated
fore =.01 and Ax=5 shows only a, slight improvement with a smaller x-step.

We observe that, there still remains a demand for an accurate, reliable and flexible
technique to describe phase changes which may occur either at a point or over a range.An
algorithm is needed for calculating the position of moving boundary/region accurately , so we
modified , and developed , an algorithm to find the numerical solution of equations (3.1)and (3.2)
we will use HOC finite difference method to find the numerical solution of the above problem .

3.3-Reyadh and Saad method

We will develop the method in which we will use the HOC scheme developed in [10] to
find the numerical solution ,where the truncation errors of compact difference operators for
second derivatives is of order 4 that is

, h?d%

u.
x*1 12 dx?

% +0(h%). (3.7)

5§ in (3.7), is the standard central difference operator for second derivative of u.To find the
forth derivatives we differentiate (3.1) with respect to x
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Fu_ dH ot
o P au oo’
du_ dH o
o v aoix

And using the above equation in (3.7) we have

d’ul _ o h® dH &%
a2l O T 12 P du aoix

o(h%).

Thus the resulting high-order scheme of (3.1)

2, 0 dH
1712 Py

5 6%u= pd—H(s;, (3.8)
du

where is 5: the standard forward difference operator for the first derivative of uwith

respect to the time tand the operator &, 52 given by

n+1

+¢o2 _ Ui
582 =

n+1 n+1 n n n
—2u07 U — (U 208 +Uy)

kh?

In our method we use the backward Euler finite difference operator with the continuous
function of temperature H defined by Szekely and Lee's in equation (3.2) i.e.

dH [c U<u,;u>u,
du | L/(u, —u,)f(u) U <u<u,

so that the backward Euler HOC finite difference form of (3.1) has the form

up—2u +uly  h? dH (uﬂjl—Zui"*l+ui”+11—(u-" —2ui"+ui”1)J: dH uM™ —u!

R i+1 Mi 7Y
2 12" du kh? du ko

The above scheme can be simplified to be

(A+B)u, + (-2B—2A+C)u" + (A+B)u, — AuMt + 2A-C)uM™ — Aut =0 (3.8)

i+1

where

L, g Lagc-29 (3.9)

The derivative dH /du was approximated by using forward, backward ,finite difference
operators and thus equation (3.2) with the half mushy rangee, taking the values107°,
0.5 and1.5°C.
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In Figure(3.4) we plot the solution of equation (3.8) and we can see the improvement in

the solution, aseptically at the mushy range ¢=10"°, where the cooling curve is smooth and
explain the behavior of the solution better than the solution of Szekely using the same half mushy
range ¢ , we also use the forward Euler finite difference, implicit method, to find the numerical
solution to equation (3.1)with the function H(u) defined by Meyer in equation (3.4) i.e.

Gu usu, —¢
HUu)=<H(Uu, —&)+LU-Uu, +&) U, —e<u<u,+e
Hu,+&)+c,(u—-u,+¢&) u=u, +¢

From equation (3.8) and if we use the implicit HOC finite difference operator, equation
(3.1) may approximated in implicit form as

uny —2uM _ h_z dH uiy —2uM™ +ult - (U - 20! +uly) ) dH u™t —uf 3.10
> P > =p—— ——,(310)
h 12° du kh du k

this can be simplified to be

AUl + (=2A+C)u + (A", + (B— AUt + (2B +2A—-C)u™ — (B - A)u =0, (3.11)

i+1
where A, Band C are given in (3.9)

The system of non-linear equation (3.11) can solved by using safe guarding Newton
method ,[5] ,and the numerical solution of (3.11) is plotted in Figure (3.5), We can conclude that
the smooth behavior of cooling curve at the mushy range&=0.1, is more accurate than the
cooling curve given by Meyer method at the same mushy range and one can notice the closeness
between the exact and the numerical solution

Analytic solution

Temperature

Time(hrs)

Figure 3.1 The exact and numerical solution of a point 25cm of test problem
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Figure 3.2 The numerical solution of a point 25cm by Szelely Method
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Figure 3.3 The numerical solution of a point 25cm by Meyer Method
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Figure 3.4 The numerical solution of a point 25cm using the backward HOC finite
difference method
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Figure 3.5 The numerical solution of a point 25cm using the forward HOC finite difference
method
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