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Abstract 

 
Lanchester- type attrition models refer to the sct of differential equation 

models that describe changes, over time, in the force levels of combatants 

and other significant variables that describe the combat process. 

Lanchester-type models express casualties\ attrition in terms of force size, 

and other associated variables and how they change over time Lanchester 

differential equation models have gained importance through their ability 

to provide insight into the dynamics of combat. 

This paper focused on derivative Mathematics of the Lanchester 

Square Law (aimed fire) and Mathematics of the Lanchester Linear Law 

(area fire) , we calculated the rate and attrition equations by The 

Kolmogorov Differential equations and markov transition equations 

finally we offered Discussion & Conclusion. 
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CHAPTER -1- 

LANCHESTER- TYPER DIFFERENTIAL ATTRITION 

MODELS 

1-1 Introduction: 

Lanchester- type attrition models refer to the sct of differential 

equation models that describe changes, over time, in the force levels of 

combatants and other significant variables that describe the combat 

process. Lanchester-type models express casualties\ attrition in terms of 

force size, and other associated variables and how they change over time. 

They may be simple models with closed form solutions capable of being 

solved through simple mathematics or they may be large, highly complex 

models requiring a variety of analytical and simulation techniques. Such 

models are used to answer such basic questions as who wins the battle or 

more complex operational questions pertaining to force mix or tactics. 

Lanchester differential equation models have gained importance 

through their ability to provide insight into the dynamics of combat and 

their applicability to almost the entire hierarchy of combat operations 

(e.g. battalion through theater-level). In cases where simple models are 

utilized, explicit analytical forms may de derived and answers readily 

provided to client\ user. Further, these differential equation models 

provide a basis for developing quantitative insights into combat 

dynamics. The simple equations form the base for model enrichment that 

provides the means to simulate combat and address more critical 

operational problems. 

While there exists a wide variety of Lanchester-type differential 

models based on size and complexity, there are several underlying factors 

that appear common to the model development process. These concepts 

are: 

 attrition to a force is function of force size and other associated 

parameters (i.e. casualty ratc = f (force size; other possible 

parameters)). 

 force size is a function of time, and the continuous real time 

variables x(t), y(t) and t are approximations to the discrete combat 

units a real force. 

 if we consider two opposing forces X,Y and let 

x(t)= size of the X force as a function of time 

y(t)=size of the Y force as a function of time 

the casualty rates can be written as a simple pair of differential equations  
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),( yxf
dt

dx
   ),( yxf

dt

dy
  

 The solution to any such system of differential equations is pair a 

of functions giving x(t) and y(t) as a function of time. 

 

1.2 Lanchesters Original Models 
Origins of the Lanchester Models 

In 1914 F.W. Lanchester, a British engineer and inventor, 

formulated two differential models for attrition under specific conditions 

of war. His purpose was to quantitatively justifying the principle of 

concentration of forces under the then conditions of modem warfarc. 

Lanchester hypothesized that in ((ancient warfare)), a battle was simply a 

collection of one –on -one ducls, with the casualty rate being independent 

of the number of units on the opposing side. Under "modern" conditions, 

he contended that the firepower\ lethality of weapons widely dispersed 

across the battlefield can be concentrated on surviving targets and a 

many- against –one situation could exist. Therefore, the casualty rates 

should be proportional to the size of the opposing force. Lanchester 

formulated some models based on ordinary differential equations to 

translate these hypotheses into mathematical terms. 

 

Conditions of Ancient Warfare 
Based on the hypothesized model for one- on –one duels, Lanchester 

argued that two forces of equal strength and fighting ability should 

intuitively be expected to lose about the same number of men. Further, 

under this one- on –one condition, any forces not engaged with an 

opponent must wait until an enemy soldier became available before 

joining combat. This implies that regardless of how large the X force is, it 

cannot engage the opposing Y force with more men than Y puts forth on 

the battlefield. Therefore under the condition of((ancient warfarc)) there 

should be no advantage in concentrating forces. 

While never explicitly formulated, Lanchester`s ancient warfare 

equations reflect a combat attrition process where attrition rates are 

independent of force size; that is 

a
dt

dx
   and   b

dt

dy
     (1.2.1)        

The individual X unit is superior to the individual Y unit if and only 

if b>a. Both sides decrease gradually in any case until one or the other 

becomes 0, at which point battle stops and 2.2.1 no longer holds. The 

relationship between x and y can be found from 
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a

b

a

b

dt

dx
dt

dy

dx

dy







       (1.2.2) 

Since the slope of y with respect to x is constant, x and y must at all 

times be related by 

],[][ 00 yyaxxb         (1.2.3) 

Where x0 and y0 the initial values. 

 

Conditions of Modern Warfare: 
As previously noted, Lanchester defined the principal condition for 

modern warfare as the ability of firers to engage a single target. He based 

this condition on the advent of modern weapons that allowed multiple 

engagement possibilities and concentration of fires form weapons widely 

dispersed on the battlefield. 

Considering the nature of modern weapons and how the 

concentration of fires could be achieved, Lanchester examined two 

general cases of combat, aimed fire and area fire. The first, aimed fire, 

assumes that individual targets are identified and attacked by any number 

of opposing systems\ fires. The second case, area fire, considers the 

situation where a force concentrates its fires over a general area occupied 

by the enemy and not at any particular enemy target. 

Under aimed fire conditions, Lanchester stated that the attrition rate 

of x depends on how many y`s are shooting at him, and likewise for y. In 

mathematical terms. 

ay
dt

dx
   bx

dt

dy
       (1.2.4) 

Here a is an attrition rate coefficients expressed in terms of (X 

casualties)/ (Y firer) x (time), and similarly for b. 

As will be shown below, it follows from 2.2.4 that x and y are 

related by 

][][ 22

0

22

0 yyaxxb        (1.2.5) 

Through the use of Lanchester- type combat models, it is possible to 

answer a variety of questions about combat between two forces. 

1. Who will win the battle; or which force will be annihilated? 

2. What force ratio is required to guarantee victory? 
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3. How many survivors will the winner have? 

4. How long will the battle last? 

5. How do the force levels change over time? 

6. How do changes in the parameters {e.g. initial force levels (x0 and 

y0) or attrition coefficients (a and b)} affect the outcome of the 

battle? 

7. Is concentration of forces a good tactic? 

While the terms found in these questions are subject to various 

interpretations, more specific questions can be answered based on the 

complexity of the model and number of parameters incorporated. As 

additional parameters are added to model, more questions may be posed. 

However, for our purpose, discussion will be limited to how Lanchester-

type models are developed and how they yield answers to seven basic 

questions listed above. 

 

1.3 Mathematics of the Lanchester Square Law (aimed fire): 
Lanchester originally hypothesized that combat between two 

homogenous forces under the conditions of modem warfare could be 

modeled as: 

ay
dy

dx
  where x(0) = x0 

bx
dt

dy
  where x(0) = y0 

The equations hold only as long as both x(t) and y(t) are positive. 

Battle stops when either number becomes zero, if not before. Based on 

hypothesized differential equations, it is` possible to derive the equations 

that will allow us to determine who wins the battle, force size and time to 

battle termination. 

 

Derivation of the State Equation: 
Using the equations for force casualty rates, it is possible to derive 

an expression for the instantaneous casualty- exchange ratio as follows: 

dy

dx

bx

ay

dt

dy
dt

dx


 

Separating the variables, 

bx dx = ay dy 
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And integrating both sides, we discover that 2

2

1

2 caycbx  . Given 

the initial conditions, the constants must be such that at all times. 

)()( 22

0

22

0 yyaxxb        (1.3.1) 

Therefore given a value for either x or y, it is possible to solver for 

the other. However, it is important to note that we do not get any 

information about when any particular force level is achieved. 

 

Force Levels as a Function of Time: 
The pair of ordinary differential equations that determines x(t) and 

y(t) can be solved using standard methods. The solution is 











































  abtabt ey

b

a
xey

b

a
xtx 0000

2

1
)(

   (1.3.2) 











































  abtabt ex

a

b
yex

a

b
yty 0000

2

1
)(   (1.3.3) 

The verity of these equations can be established by observing that 

x(0) and y(0) have the required values. And that the two differential 

equations are satisfied. Of course it should be understood that 2.3.2 and 

2.3.3 hold only as long as both x(t) and y(t) are nonnegative. 

 

Battle Outcome and Duration 
To determine who will win the battle it is necessary to specify some 

condition that will cause the battle to terminate. Assume that the x-side 

will surrender or break off fighting in some other way if x(t) ever shrinks 

to xBP, where of course xBP < x0, and similarly for the y- side and yBP. At 

the terminal time, either x(t) =xBP and y(t)> yBP, in which case the y-side 

is the winner, or y(t)- yBP, x(t)>xBP, and the x- side is the winner. 

Case Y wins: 
Since the X loses, the number of y-survivors yf can be obtained by 

solving 1.3.1 with x=xBP. 

)()( 22

0

22

0 fBP yyaxxb   

),( 22

0

2

0 BPf xx
a

b
yY        (1.3.4) 
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Assuming that yf>yBP. The criterion for this be true; that is, the 

criterion for the y-side to win the battle, is 

)()( 22

0

22

0 BPBP yyaxxb        (1.3.5) 

The left and right-hand sides of 1.3.5 might be called the ((fighting 

strengths)) of the two sides, since the comparison determines the winner. 

Note that the number of participants on each side is squared, whereas the 

firepower rate coefficient is not, hence the term (Square Law). In Square 

Law battle, it is more important to have lots of units than it is have 

powerful units. Intuitively, adding one more unit to a square law battle 

serves two purposes: it fires at the enemy, and in addition it dilutes the 

enemy`s fire against existing units. 

Increasing a firepower rate coefficient only serves the first purpose. 

The length of the battle can be determined by solving 1.3.2 for t 

when x(t)=xBP Let z= exp( abt ). Since exp( abt ) = 1\z, 1.3.2 is a 

quadratic equation in z. The only solution for which 0<z1 is 

00

2

0

2

0

2 )(

aybx

bxayxxb
z

BPBP




      (1.3.6) 

The time t at which x(t) is xBP is therefore 

abzt /)ln(         (1.3.7) 

For example, suppose a=01/day,b= .02/day, x0= 20, and y0= 40, with 

xBP= yBP=0. Then z= .4142,t =62.32 days and yf = 28.28. In spite of 

having inferior units (a<b), Y wins with mots of his forces intact. 

Casa X wins: 

If )()( 22

0

22

0 BPBP yyaxxb       (1.3.8) 

Then y(t) will become yBP before x(t)=xBP; that is, X wins. The 

number of x- survivors is 

).( 22

0

2

0 BPf yy
b

a
xx         (1.3.9) 

Solving the quadratic equation 1.3.3 with y(t) = yBP for z as above, 

the solution is 

.
)(

00

2

0

2

0

2

aybx

aybxyya
z

BPBP




     (1.3.10) 

With 1.3.7 still determining the time of battle termination. 
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1.4  Mathematics of the Lanchester Linear Law (area fire): 

The basic hypothesis of the Linear Law is 

axy
dt

dx
  and   bxy

dt

dy
  

While a and b are still referred to attrition coefficients, they differ 

form those coefficients used in the Square Law. Specifically, the attrition 

coefficients are measured in units of (casualties/ ((time)  (firers)  

(targets)). Any comparison of attrition coefficients between laws is a 

comparison of applies with oranges, since the units are different. While 

the Linear Law is usually assumed to apply to area fire weapons such as 

artillery, any other assumptions as well as the number of firers, would do 

as well. 

 

Derivation of the State Equation: 
The instantaneous casualty exchange ratio for the Linear Law can be 

expressed as: 

a

b

axy

bxy

dt

dx
dt

dy

dx

dy







       (1.4.1) 

In other words, the rate of change of y with respect to x is a constant, 

as in ancient warfare. Therefore x and y must always be related by 

],[][ 00 yyaxxb         (1.4.2) 

Where x0 and y0 are the initial values of x and y. If the battle 

breakpoints are xBP and yBP, the fighting strengths of the two sides are 

now b(x0-xBP) and a(y0-yBP), respectively. The Linear Law derives its 

name from these formulas, since fighting strength is linear in the number 

of combatants. The winner is still the side with the larger fighting 

strength. Note that 1.4.2 is the same state equation that holds in ancient 

warfare; the dynamics change drastically under the Linear Law, but not 

the final outcome. 

 

1.5 Other Functional Forms of Lanchester`s Original Models: 
We have shown how Lanchester`s differential equations can be used 

to answer some basic questions on combat under the conditions of aimed 

and area fire homogeneous combat. 
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However, as previously noted, combat is rarely homogeneous and as 

the original Lanchester models while useful have many shortcomings. 

Some of these shortcomings are: 

 considers only constant attrition rate coefficients. 

 no force movement during battle. 

 battle termination is not modeled. 

 tactical decision processes are not considered. 

 C3 is not considered. 

 no logistical aspects are portrayed. 

 suppressive effects of weapons are not considered. 

 target prioritization/ fire allocation not explicitly considered. 

 Non combat losses are not considered. 

 

Mixed Combat 
Up to this point we have developed the necessary functional forms 

for the aimed fire(or Square Law) and the area fire/ near Law equations 

for homogeneous force combat. Form here it is possible to describe 

various forms of combat that are combinations of these two forms. The 

most obvious form is the one for mixed combat. Specifically where one 

force uses aimed fires and the opposing force uses area fires, denoted 

F\FT. 

This situation is analogous to the X force attacking the Y force in a 

prepared defensive position. While both sides use aimed fires, it is 

important to remember that the time to acquire a target for an X firer 

dominates the attacking force actions and therefore the Linear Law 

applies. The same situation was shown to apply for insurgency operation 

models where one force ambushes another force. If X is in the open and 

Y ambushes X, then the Y firers use aimed fires but the X force fires 

must use area fire since they do not know the exact positions of  their 

attackers. In these cases, the state equation can be developed exactly as in 

the linear and Square Law to yield: 

)()(
2

0

22

0 yyaxx
b

       (1.5.1) 

 

Logarithmic Law (non combat losses): 
A second extension of the Lanchester models hypothesizes that the 

initial states of a small unit engagement can be models as a T/T attrition 

process or 

ax
dt

dx
   and   by

dt

dy
     (1.5.2) 
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This process is referred to as the logarithmic law from its state 

equation 

y

y
a

x

x
b 00 lnln 

       (1.5.3) 

The logarithmic law is almost silly as a ((combat)) model because 

each side decreases asymptotically to zero independent of number of 

combatants on the other side. ((We have met the enemy, and he is us!)) 

But the logarithmic law makes more sense than might appear at first 

sight, since there are many sources of attrition other than hostile fire that 

must be accounted for (disease, desertion,…). The logarithmic law is not 

the whole story, but including terms such as-ax in the expression for dx/dt 

can still be used to model such phenomena in a larger situation. 

 

Helmbold Equations: 
A general form for homogeneous force attrition rate that yields the 

square, linear, and logarithmic laws as special cases was postulated by R. 

Helmbold in 1965. He stated that the relative fire effectiveness is 

influenced by the force ratio in the sense that if x/y is extremely large. 

Then X cannot effectively bring all his weapons to bear on the Y force. 

His reasoning was based on the perception that limitations of space, 

terrain masking, and the target engagement opportunities would prevent a 

large force from using its full firepower. 

In conjunction with this hypothesis, Helmbold suggested that the 

following Lanchester- type differential equations would be more 

appropriate 

y
y

x
a

dt

dx
w











1

     and        x
x

y
b

dt

dy
w











1

           (1.5.4) 

Where  is a measure of efficiency with which the large force can be 

brought to bear on the small force. The alert reader will immediately see 

that these equations are the aimed fire equations with a force ratio 

modifier added in. 

In order to illustrate the range of situations that the Helmbold 

equations cover, we need only to assign ? the values of 0,1,and ?and 

evaluate the resulting differential equations. 

When  

 =0, the Logarithmic Law. 

 =1, the Square Law. 

 =1/2, the Linear Law, at least for the state equation. 
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In the last case, Helmbold`s equations share with ancient warfare the 

property that a force can be annihilated in finite time. This is not true for 

the Linear Law, but nonetheless the same state equations holds. 

 

1.6 Enrichment to Lanchester- type Models: 
The preceding section dealt with modeling the attrition processes for 

various combat situations in terms of force characteristics for 

homogenous force combat. While these equations can cover a broad 

range of combat scenarios, they do not account for many factors that can 

affect the outcome of a battle. Since we recognize that the dynamics of 

battle entails a myriad of factors, we must introduce them into our earlier 

equations if we wish to accurately portray combat. In this section we will 

consider the following enrichments of the Lanchester – type models: 

1. replacements, reinforcements, and\or withdrawal, 

2. range dependency, 

3. heterogeneous forces, and 

Replacements, Reinforcements, and Withdrawal: 
Each of these there options is a reality on the battlefield and in 

practice, a critical decision problem faced by a commander. While each 

alternative may occur under various conditions and in different form, we 

will only consider the simple and direct changes. For our purpose, we 

define two models: 

 continuous replacement/ withdrawal, and 

 unit reinforcement. 

The continuous model simply adds a constant to each equation to 

represent replacement or withdrawal at a specified rate. Morse and 

Kimball (1950) define P and Q to be the Logarithmic Law attrition: 

dx/ dt= P – ay – x and dy/ dy = Q– bx – y                           (1.6.1) 

They are able to obtain a complicated analytic solution. We will not 

discuss it further, except to note that x(t) or y(t) can now be an increasing 

function of time on account of the reinforcements. Indeed, the equations 

were motivated by prior work in biological systems where increases are 

natural. 

In the ease of unit reinforcement, instantaneous changes in x(t) or 

y(t) occur at a particular time (tr) which is the reinforcement/ withdrawal 

time. Unlike the continuous model, this process occurs outside the basic 

attrition equation. This essentially requires us to stop the equation at t r 

and resume the battle with a different force structure. Figure 1.6.1 

illustrates the unit replacement process over time. 
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Figure [1.6.1] Unit Reinforcement in Lanchester Models 

Range Dependency 
Early models failed to consider in detail the effect of range on the 

attrition process. Practical experience indicated attrition is affected by 

range and should be considered depending on the resolution level of the 

model. Under range dependency, the attrition coefficients are functions of 

range and the differential equations are of the form 

yra
dt

dx
)(        and         xrb

dt

dy
)(  

The dependency of the attrition coefficient on range was first studied 

by Bonder for a constant speed attack and various forms for a(r) and b(r). 

Based on his studies, Bonder suggested that constant attrition coefficients 

could be replaced by 

max

max

max

0

0)(

01)(

rrforra

rrfor
r

r
ara

















    (1.6.2) 

Where rmax=maximum range of the weapon system, and 

ao=maximum attrition rate.  

Plotting the attrition coefficient as a function of range (Figure 1.6.2) 

we see how different values for  can affect the outcomes. 
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Figure [1.6.2] Bonder Range Dependent Attrition Coefficient plots 

When we consider the constant speed model, we can express the 

range as a function of time. 

vtrtr  0)(  

Where r0 = initial range and v = the closing velocity. 

The differential equations then become functions of t only 

dx/dt = - a[r(t)]y 

And can be analyzed. 

Heterogeneous Forces: 
Up to now we have assumed that individual elements of the X force 

have identical characteristics. Thus only the total number of combatants 

X(t) is the driving factor for attrition assessment. A schematic of 

homogeneous combat is shown in Figure 1.6.3. 

 

 

 

 

 

figure [1.6.3] Homogeneous Combat Model 

 

Now let us consider a combined arms force: 

X =[x1(t), x2(t), ….xm(t)] 

X 

FORCE 

Y 

FORCE 

X(t) y(t) 

a 

b 
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Y =[y1(t), y2(t),…..yn(t)] 

Where xi(t) = number of X survivors of weapon system i at time t 

 

 

 

 

 

 

 

 

 

Figure[ 1.6.4] Heterogeneous Combat xi system vs. Y force 

Lanchester- type model for attrition assessment will involve m+n 

differential equations- assessing the casualty rate for each xi,yi separately. 

If we select a single xi system and consider attrition to that system it 

would resemble Figure 1.6.4 

Therefore, we can assess the attrition to a single system as: 





n

j

i

dt

dx

1
  (attrition of xi systems caused by yi system) 

(Note: the attrition may be 0 for some j if yi does not kill xi.) 

For the heterogeneous model to function we have to make two 

assumptions about additivity. The first assumption, additivity says that 

there is no direct synergism. Simply stated the only way any antitank 

systems can contribute to the effectiveness of tank systems is by killing 

enemy tank systems. Consequently, their presence or absence in a force 

does not enhance the killing potential of a tank system. Hence synergism 

does not exist if attrition depends only on yi. If attrition depends on yi and 

yk, for kj then synergism exists. To model synergistic effects is a 

complex task however it is not a problem here as the additivity 

assumption has eliminated the possibility of such effects. 

The second assumption, proportionality says that the loss rate of x i 

caused by yi is proportional to the number of yi that engage xi. To better 

understand this assumption let us define ij  as the fraction of yi fires 

Xi 
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allocated to targets of type xi where 









i

ij 1 . Then on the average 

we can say that: 

jijij yy   

Is the number of yj`s that engage xi. For example, if yi=100 and 

ij = 0.25 then: 

yj = 25 

This does not say that only 25 Y firers shoot at x i, but rather 

averaged over the yi force, 1/4 of the time is spent engaging xi targets. 

Now if we let aij represent the attrition rate of one yj system shooting 

at xi, then if all the yi firers are allocated against xi systems 

ijijjijij yaya   

Defining the combination of the attrition term (aij) and the allocation 

term ij , we get: 

ijijjij yayA   

Since we now can represent one system within the force, it is a 

simple step to model the complete system. Hence the complete 

heterogeneous system is 





n

j

jij
i yA

dt

dx

1

 i= 1,…,m 





m

j

iji
i xB

dt

dy

1

 j= 1, …,n 

With initial conditions 
00 )0(;)0( jjii yyxx   And with the 

understanding that Aij  becomes zero if either xi(t) =0 or yi(t)=0. 

Once we have very written this system of equations, we can go no 

further analytically. We are at a point very similar to the original Square 

Law solution but the answer gives little insight into the combat dynamies. 

In short, the equations are too complex and there are too many 

coefficients. This leaves us with the problem of application to real world 

models. 
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If we hold Aij and Bij constant, the equations are essentially the 

Lanchester Square Law equations. However, we are not bound by any 

one particular law when we model heterogeneous force combat. In most 

operational combat models using Lanchester –type attrition processes, the 

heterogeneous equations shown above are either explicitly or implicitly 

changed to correspond to the nature of particular system interactions. 

Thus in a series of ij engagements there option occurs when the form of 

the basic equation is changed by letting the coefficients be variable and 

letting Aij/Bij be functions of the number of xi`s and yi`s. In either case, 

we are foreed to use numerical solutions or some method gor coefficient 

estimation. 

While heterogeneous force combat appears to be a nearly impossible 

task to model, it is quickly placed in perspective if one remembers that 

same techniques used to model homogeneous combat can be used to 

model the subcomponents of heterogeneous force combat. Thus we may 

state, simply, that heterogeneous force combat is just the summation of a 

series of homogeneous force battles. 

 

Stochastic Lanchester Models Probability Maps 
Let P(m,n,t) be the probability that the state is (m,n) at time t. A 

probability map simply shows the probability for all states at some 

specified time. Probability maps can be constructed by taking advantage 

of the fact that P(m,n,t) must satisfy the Chapman – Kolmogorov 

equations (ref to Ross): 

),,()),,(),,((

),1,(),1,(),,1(),,1(
),,(

tnmPtnmBtnmA

tnmPtnmBtnmPtnmA
dt

tnmdP





 

Where A() and B() are the transition rates. If the battle starts in state 

(m0,n0) then m and n can be confined to 00 mm   and 00 nn  , with 

P(m,n,t) being 0 otherwise. Since the state (0,0) is also impossible, there 

are a total of m0n0 +m0 +n0 simultaneous differential equations that must 

be solved. Figures 1.6.6-8 show some examples. The figures apply to a 

Square Law battle where A(m,n,t)=.01n, B(m,n,t)=.2m, m0=20 and 

n0=40. The deterministic version would have the y-side winning at time 

62.32 with 28.28 survivors. The figures show probability maps at time 

20,40 and 60 for the stochastic version. The battle may actually be over 

by time 40, since at that time some probability has already accumulated 

in the states where m=0. By time 60, most of the probability is in those. 

In a less lopsided battle, there might also be some probability in the states 

where n=0, but in this case the m-side has essentially no chance of 
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winning. Note that the deterministic version gets the winner right, and (by 

eyeball) the average number of survivors, but Figure 1.6.8 makes it clear 

that the number of n- survivors can vary quite a from its average. 

 

 

 

 

 

 

 

 

 

 

 

Figure [1.6.6] Probability Map at Time 20 

 

 

 

 

 

 

 

 

Figure[ 1.6.7] Probability Map at Time 40 
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Figure [1.6.8[ Probability Map at Time 60 

 

 

 

 

1.7- Attrition Coefficient Estimation for Lanchester Models: 
Throughout the chapter we have referred to casualty rates or attrition 

coefficients while providing only simple dimensional definitions. 

Additionally we have assigned values to the coefficients for purposes of 

examining trends and combat processes but never have we shown how 

we got the values for a and b. For illustrative purposes let us consider a 

simple F|F deterministic combat process. By definition we know that: 

ay
dt

dx
  and bx

dt

dy
  

Where a=X casualties/ unit time/ Y firer and b=Y casualties/ unit 

time/ X firer. And we can say that the attrition coefficients a and b are a 

function of some unspecified attrition factors (a= f(attrition factors)). 

Inherent in these hypotheses is the total X casualties per unit of time 

is proportional to the number of Y firers. Intuitively we know that many 

other factors influence attrition. This raises the question of how to capture 

these other factors into the attrition rate coefficients, a and b. If we are 

modeling a battle in which any these factors change with t (e.g. range) 

then we must let a= a(t), a nonconstant. Which our first reaction to this is 

to say that  this will lead to increasingly complex and intractable 

equations, recall that by using numerical solution techniques our task will 

not become any harder since t Should be sufficiently small for a(t) to be 

considered constant within the interval. Therefore incorporating time 

dependent factors into attrition coefficients need not be avoided for fear 

of complexity. 

As indicated above, the prime consideration for the modeler is 

defining the time unit to be used. For example. If we let one time step 

equal one day (as is the usual practice in highly aggregated firepower 

score models) then a is measured in casualties/ day/ enemy. But combat is 

not a uniform process over an entire day. Thus we somehow have to 

average attrition over various battle phases including parts of the day 

when non-direct combat engagements are occurring. On the other hand if 

we let of the time step equal one minute then we need 2460 or 1440 

time steps to make-up a sing day. In each time step we can compute a, b 

to reflect the essentially instantaneous combat conditions. Concurrently, 
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the model simulation then sets up the conditions or situation between 

opposing forces and from the situation we can compute new values for a 

and b for use in the next time step. Therefore we can relate a,b directly to 

weapon systems parameters such as Pk, firing rate, basic loads, etc, 

through a series of look- up tables. 

Operational models currently in use tend toward the second ease, 

using time steps for ground casualty assessment in the range of 0.1 to15 

minutes. For our purposes, coefficient estimates will concentrate on 

small? So we can assume 

1. a,b are essentially constant over the interval (t+t). 

2. t is small enough that the battlefield conditions (including force 

size) at the beginning of the interval are representative of the entire 

interval. 

As with any attempt to model real world phenomenon it is logical to 

start with a simple representation and then enrich or embellish as 

necessary. Using this approach will allow us to build the necessary 

foundation for more sophisticated techniques without losing sight of our 

purpose of how to estimate attrition coefficients. With the direction for 

the examination of coefficient estimation set, let us first look at the basic 

technique using a deterministic model. 

 

Naive Estimate 
In the naïve estimate we consider the casualty rate, a, for point to be: 

a = (firing rate)  (prob. Of a casualty per shot) 

or  

a = vf  Pssk 

Where the maximum value for vf is based on engineering parameters 

while the average vf is almost always less due to battlefield conditions 

developed essentially from behavioral data. 

The Pssk is a single shot kill probability based primarily on 

engineering data and dependent upon factors such as range, target type, 

and firer posture. For aimed fire we consider Pssk to be constant and firing 

dominates the target acquisition process then Vf is also constant. Thus in 

the aimed fire case, we get 

ay
dt

dx
  where a = vf Pssk is a constant. 

In the case of area fire, Vf being constant is a reasonable assumption. 

The probability of a single shot kill is usually determined by comparing 

the lethal area of a round to that of the target area. Then  

Pssk = expected number of targets killed by one round. 
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Subsequently the probability of a kill for single shot can be 

expressed as: 

Pssk = lethal area of one round time the target density 

tgt

ssk
A

x
aP 1  

       x
A

a

tgt

1  

Where al= lethal area of one round 

Atgt= total target area 

And x = number of targets. 

Thus 

xy
A

a
v

dt

dx

tgt

f
1  

Yielding the expression for the Linear Law since a depends up on x. 

 

Poisson (Markov) Assumption 
Recalling from the earlier discussion of stochastic attrition models 

that we were able to determine the outcome of battle based on the time 

between casualties and several factors. During this investigation we noted 

that the casualty rate could be expressed as the reciprocal of the expected 

time between casualties at any time during the battle. Therefore since we 

can express the attrition coefficient as 

][

1

xYTE
a   

Where the denominator is the expected time for one Y firer to kill 

one X target, we can estimate the attrition rate coefficients throughout a 

battle if we can develop a model for the expected time to kill a target. 

Such an approach is preferred because we can easily incorporate the 

various factors that are relevant to the weapon firing cycle that were 

merely averaged together in the naïve estimate. Analogously, for 

heterogeneous Lanchester models we can compute attrition rates as: 

][

1

ij

ij
TE

a   

Where Tij is the time (a random variable) for one Yj firer to kill one 

passive Xi target in an engagement where Yj concentrates on Xi. The level 
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of concentration can then be modified by a fire allocation factor ( ij ) 

based on acquisition priorities. This specific process will be examined in 

greater detail when we discuss the Bonder methodology for attrition 

coefficient generation. 

 

 

 

Chapter two 

Stochastic Model Approach 
 

2.1 The stochastic combat model 
The state of each air combat is the important parameter that must be 

represented at any instant of time. A combat state means the number of 

the remaining aircrafts of the two forces at that time. If the two opposing 

forces are named as X and Y and each of which beginning a combat with 

his initial force size (i.e.x0 and y0 of aircrafts for each side respectively). 

Each one of the two forces will terminate the battle if his remaining 

number of aircrafts reaches an indicated number called break point (or 

terminated) number. These two number are assumed to be xf for the X 

force and yf for Y force. The possible states of these two forces can be 

represented as shown in figure (2-1). 

The states of the two force is (x0,y0) at the beginning time of the 

combat. As the combat time increase the chance of decreasing the two 

forces will increase. This is due to the casualties (attrition or kill rate) of 

each one on the other. This reduction happens in a stochastic manner. The 

side reaches the termination number firstly will lose the combat. the 

remaining number of aircrafts on the two sides at that time will represent 

the expected survival number. So the probability of being in each state at 

each time (t), must be evaluated. This probability is denoted by Px,y(t)  
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Fig [2.1] state space lattice representation of a Homogeneous 

Stochastic air combat 

Conuting process is either the killing process associated with one 

side or the killing process associated with the other side. Any stochastic 

process like {X(t), t0}  Is a counting process if X(t) represents the 

number of events that have occurred up to time t {assuming X(0)=0] and: 

)(}1)()(Pr{ tOtXttX    (2.1.1) 

i.e. the probability of one side having two or more kills during a 

small time interval (t, t+ t) is proportional to O (t) 

 

2.2 Renewal Process  
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Renewal process was defined as a discrete- state process, which 

counts the number of event occurring, it may be called a counting 

process. If the time intervals between consecutive epochs of occurrence 

of the events be independent and identically distributed random variables. 

Then N(t) is called a renewal counting process. 

The time parameter can be considered to be either discrete or 

continuous. For a given value of t, N(t) is a proper random variable, and 

its distribution is: 

....2,1,0)()(])([)( 1   ntFtFntNPtP nnn        (2.2.1) 

And 







1

)()())((
n

n tFtUtNE       (2.2.2) 

Where: 

)(*)()( 11 tFtFtF nn   

The renewal function and the renewal density integral equations are: 

 

t

dFtUtFtU
0

1 )()()()(       (2.2.3) 

 

t

dftutftu
0

1 )()()()(       (2.2.4) 

 

2.3 Recurrent and Transience 

Let fi = the probability of returning to state I given that X0=i 

)/0( 0 iXnsomeforiXPf ni   

i is recurrent if fi =1 and that i is transient if fi <1 

If i is transient, the number of time the process visit I is a geometric 

random variable with probability of success equal to fi. i  is transient if 

the expected number of visits to i is finite, and if i is recurrent then 

expected number of visits to I is infinite. 

i is transient if  
K

k

iiP ,  
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2.4 Markov- Chains 
Let X  =(X0,X1,…) is a sequence of random variable taking values in 

a countable set S called the state space of X. saying that X is markov 

chain if one have[13]: 

ijnnn piXiXiXjXP
n


 ),....,,/( 0011 1

 

Setting n=0: 

ijPiXjXP  )/( 01  

However 

)(

)/(
)/(

1

12
12

iXP

iXjXP
iXjXP




  

                                 





k iXP

kXiXjXP

)(

),,(

1

012

 

 

 
k

iXkXPkXiXjXP )/(),,( 10012

 

 
k

ij iXkXPP )/( 10  

= Pi,j 

In the same fashion, for any non – negative integer n, 

ijnn PiXjXP  )/( 1       (2.4.1) 

For this reason, the numbers Pij are called transition probabilities, 

and 

 
j

ijP 1          (2.4.2) 
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2.5 Attrition rate 
This factor is depending on the firing rate of each side during each 

time and measured by the counter effects. It means that one side is 

making a kill during the time interval (t,t+t) given that the combat is in 

state (x, y) at time t [17, 3]. 

The term Pr(S(t, x, y)) means: the probability that the combat is in 

state (x, y) at time t. i.e Pr(S(t, x, y)) = Px.y(t) 

The kill rate of aircraft xi at time t is defined [3] as: 

t

Kx
tW

t
x






}Pr{
lim)( 1

0
1        (2.5.1) 

Where kx means that x makes a kill during (t, t+ t) 

If t is small enough, then: 

)(0)(}Pr{ 11 tttWK xx   

t

VKx
VtW

t
x






}/Pr{
lim)/( 1

0
1       (2.5.2) 

)(0)/()},([Pr{ 11 ttntintKK xxx      (2.5.3) 

)(0),/()},,(/Pr{ 1 ttyxtiyxtSK xx     (2.5.4) 

Where 

id(t/n): be the kill rate of the side d at time t, given that it makes n kills up 

to time t, d= x, y. 

The expression for ix(t/n) was derived by Jin [15] as: 

)()(

)(
)/(

1

1

tFtF

tf
nti

nn

n

x






       (2.5.5) 

And 

2)()()(
0

1    nforduutftftf

t

nn     (2.5.6) 

2)()()(
0

1    nforudFutFtF

t

nn     (2.5.7) 

Where fn(t) is the probability density function of the interkilling 

time, and Fn(t) is the corresponding distribution function. 
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To develop a certain expression for the kill rate in eq. using the 

appropriate distribution for such process. Most of the available literatures 

indicate that the exponential distribution is the appropriate. We need to 

derive an expression to represent. 

 

3.6.1 The Kolmogorov Differential equations  
As in discrete time: 


k

kjikij tPsPtSP )()()(
 

And in matrix terms 

P(S+t) = P(s) P(t) 

Setting t = ds gives 

P(s+ds) = P(s) P(ds) 

Or  

P(s+ds) – P(s) = P(s) [P(ds) – I] 

Which gives 

QsPsP )()(   

Where 

Q= P(0), and  P(0) = I 

This is called the kolmogorov forward equation. 

 
k

ksXPksDjdsSXPjdsSXP ))(())(/)(())((  

     
 


jk jk

kjkj jsXPqdsqkSXP ))(()1())((  

If: 


j

kjkk qq  then 

 
k

kjqksXPksXP
ds

d
))(())((  

Putting S = dt in the Chapman- Kolmogorov equations: 

QsPsP )()(   

It is theoretically possible to solve Kolmogorov equations, a 

solution is 
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
n

nn nQtQttP !/)exp()(  

Using fig (3-1) and the above definitions, the exact kolmogorov 

equations for the combat states can be derived [51] as follows: 

a. For the initial state (x0 ,y0): 

]),/(1][),/(1)[()( 0000000,00,0 tyxtiytyxtixtPttP yxyxyx 

      ]),/(),/(1)[( 0000000,0 tyxtiytyxtixtP yxyx   

      )],/(),/([)()( 0000000,00,0 yxtiyyxtixttPtP yxyxyx   

)],/(.),/(.[)()()( 0000000,00,00,0 yxtiyyxtixttPtPttP yxyxyxyx 

)],/(.),/(.)[(
)()(

lim 0000000,0

0,00,0

0
yxtiyyxtixtP

t

tPttP
yxyx

yxyx

t







 

)],/(.),/(.)[(
)(

0000000,0

0,0
yxtiyyxtixtP

dt

tdP
yxyx

yx
        (2.62) 

b. For the second state (x0,y) where yf <y <y0, which is the nearest to the 

initial state (X side kills one from Y side first): 

)])1,/(.)[(]),/(.1[

]),/(.1)[()(

001,00

00,0,0

tyxtixtPtyxtiy

tyxtixtPttP

xyxy

xyxyx






 

)]1,/(.)[(

)],/(.),/(.)[(
)()(

lim

001,0

000,0

,0,0

0












yxtixtP

yxtiyyxtixtP
t

tPttP

xyx

yxyx

yxyx

t
 

)]1,/(.)[(

)],/(.),/(.)[(
)(

001,0

000,0

,0





 yxtixtP

yxtiyyxtixtP
dt

tdP

xyx

yxyx

yx

             (2.64) 

c. For states (x, y0) where xf <x <x0. The other side nearest state or (Y 

side kills one from the X side first): 

)],1/(.)[(

)],/(.),/(.)[(
)(

0001

0000,

,0

yxyiytP

yxtiyyxtixtP
dt

tdp

yyx

yxyx

yx







  (2.65) 
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d. For states (x,y) where xf < x < x0 and yf <y <y0, (this state is called 

transient state). 

)],1/(.)[()]1,/(.)[(

)],/(.),/(.)[(
)(

,11,

,

,

yxtiytPyxtixtP

yxtiyyxtixtP
dt

tdp

yyxxyx

yxyx

yx







(2.66) 

5. For states (x, yf), where xf < x < x0 

)]1,/(,)[(
)(

1,   fxyfx yxtixtP
dt

tdp
    (2.67) 

6. For states (xf, y) where yf < y < y0 

)],1/()[(
)(

,1

,
yxtyitP

dt

tdP
fyyxf

yx
     (2.68) 

The initial conditions are 

1)0(0,0 yxP         (2.69) 

1)0(, yxP  for all other states. 

 

2.6.2 Kolmogorov equations solutions: 
The set of differential equations (kolmogorov equations) can be  

solved if the conditional kill rate (attrition rate) is constant over the 

combat time. This is not true assumption and didn't give correct 

indications about the actual behavior of the participants. So the other way 

is to develop an approximation method for calculating such factor. This is 

a very difficult method and needs numerical calculations, which takes a 

very long time on the computer. This approach was done by[3]. He 

performs a numerical calculation using Range- Kutta- method to solve the 

set of Kolmogorov equations numerically by approximating the 

conditional kill rate in each state. He succeeded in approximating a 

conditional kill rate for combat states involving small numbers only (4 by 

4). Any increase in the participant number will take very long time reach 

the answer. This approach wills strong the need for simulation as a tool to 

be used in such turbulent situations. 

 

2.4 Discussion & Conclusion: 
Everything we have done in the first part of this chapter has been 

deterministic and continuous, whereas discrete units fight actual battles 



جلة ديالى / م                                                               العدد الخمسون                

2011 
 

 645 

very much subject to luck. Intuitively, the deterministic models should be 

at  their best when the numbers of units involved are large. 

Using Lanchester attrition models in the current warfare indicates 

the following shortcomings: 

 Considers only constant attrition rate coefficients 

 No force movement during battle 

 Battle termination is not modeled 

 Tactical decision processes are not considered 

 Suppressive effects of weapons are not considered 

 Non – combat losses are not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure[2,2]  Typical Solutions of State probabilities  

In this chapter a review a bout the most applicable combat models 

was done. From this review a clear comparison between the use of 

deterministic and stochastic models was reached. Many researchers make 

a foundation that any deals with the new combat must be through the 

stochastic approach. This approach makes use of the available 

deterministic tools in evaluating some combat factors. Some of these 

factors are: 

1. The weapon score and the force strength. 

2. The termination rules and the force divisions. 
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3. The available number of sorties for each type of aircrafts at each 

unit of time. 

4. the munitions needed for each target. 

5. The optimum number of weapons (aircrafts) required to kill each 

target. 

 

 

 المستخلص

الل  مجم علة ملن المعلادلا   Lanchesterتشير نماذج الاستنزاف التفاضللية نل   

التفاضلللية التللي تصللا تميللرا  موللت يا  ةلل ة المعركللة ومتميللرا  اخللر  م مللة فللي 

 المعركة عبر الزمن.

ملللن  يلللث  جلللم ال للل ة  )الخساااائر تعبلللر النملللاذج الملللهك رة اعلللت  علللن الاصلللابا  

 Lanchesterا , ل للد كوللو نملل ذج الاسللتنزاف نلل   ومتميللرا  اخللر  مرتبهللة ب لل

 معرفة وبصيرة للمعارك الديناميكية . ااهمية من ختل اعهاءه

 (Aim Fire)تناول البحث اشت اق معادلة ةان ن التربيع الرياضي النار المص بة 

للنملل ذج ذاتللم وتملل    Area Fire)والمعادلللة اليهيللة  Lanchester لنملل ذج 

 ة و الة الانتصار لكل طرف من اطراف التنافس . واب نتائج المعرك

اب لليلرائ  الا تماليلة العشل ائية وةلد تلم  ولLanchester كما تناول البحث نماذج

فس معادلا  ومعدلا  الاستنزاف لكل  الة من  لالا  الانتصلار وال زيملة لكلل متنلا

 Markovكلللهلع معلللادلا   Kolmogrovوةلللد  لللر  الحلللل ملللن خلللتل معلللادلا  

 لية واستعرض  الاستنتا ا  والنتائج .الانت ا
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CLS 
DIM A(20, 20, 35) 
DIM Y (50), W(50) 
 
A0 = 4: B0 = 8: AF = 0: BF = 0: RA = .02: RB = .01 
    TT = 34 
    REM 1     P(A0,B0) 
A1 = (A0 * RA + B0 * RB) 
FOR K = 0 TO TT 
         A(B0, A0, K) = EXP (- A0 * K) 
NEXT K 
REM 2 P(A0, B) 
       FOR I = B0 – 1 TO BF + 1 STEP – 1 
       A (I, A0, 0) = 0 
       FOR K = 1 TO TT 
              A1 = (A0 * RA + I * RB) 
              FOR X = 0 TO K 
                  Y (X) = A(I + 1, A, X) * EXP (A1 * X) 
        NEXT 
                          REM CALCULATE THE WEIGHT 
         IF K >1 THEN 
         FOR II = 1 TO K – 1 STEP 2 
             W (II) = 4 
             W (II +1) = 2 
         NEXT II 
         END IF 
         W(0) = 1: W(K) = 1 
         SUM = 0 
         FOR II = 0 TO K 
            SUM = SUM + Y(II) * W(II) 
         NEXT II 
    SUM = SUM /3 
    A(I, A0, K) = EXP (- A1 * K) * A0 * RA * SUM 
NEXT K 
NEXT I 
                    REM 3 P(A, B0) 
FRO J = A0 – 1 TO AF + 1 STEP -1 
                 A (B0, J, 0) =0 
   FOR K = 1 TP TT 
     A1 = (J * RA + B0 * RB) 
         FOR X = 0 TO K 
            Y(X) = A(B0, J + 1, X) * EXP (A1 * X) 
NEXT X 
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                          REM CALCULATE THE WEIGHT 
 
IF K > 1 THEN 
FOR II = 1 TO K – 1 STEP 2 
   W (II) = 4 
    W (II + 1) = 2 
NEXT II 
END IF 
W (0) = 1: W(K) = 1 
SUM = 0 
FOR II = 0 TO K 
     SUM = SUM + Y (II) * W (II) 
     NEX II 
     SUM = SUM / 3 
     A (B0, J, K) = EXP ( - A1 * K) * B0 * RB * USM 
NEXT K 
NEXT J 
 
      REM 4       P (A, B) 
FOR J = A0 – 1 TO AF + 1 STEP – 1 
    FOR I = B0 – 1 TO BF + 1 STEP – 1 
              A (I, J, 0) = 0 
FOR K = 1 TO TT 
             A1 = (J * RA + I * RB) 
             FRO X = 0 TO K 
Y (X) = (A(I + 1, J, X) * J * RA + I * RB * A(I, J + 1, X)) 
           NEXT X 

REM CSALCULATE THE WEIGHT 
                IF K > 1 THEN 
                FOR II = 1 TO K – 1 STEP 2 
          W(II) = 4 
          W(II + 1) = 2 
NEXT II 
END IF 
     W(0) = 1: W(K) = 1 
     SUM = 0 
     FOR II = 0 TO K 
       SUM = SUM + Y (II) * W (II) 
      NEXT II 
SUM = SUM /3 
       A(I, J, K) = EXP (-A1 * K) * SUM 
     NEXT K 
   NEXT I 
NEXT J 
 
         REM 5    P(A, BF) 
       FOR J = A0 TO AF + 1 STEP – 1 
A(BF, J, 0) = 0 
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FOR K = 1 TO TT 
    FOR X = 0 TO K 
        Y (X) = A (BF + 1, J, X) 
   NEXT X 
   REM  CALCULATE THE WEIGHT 
              W(0) = 1 
IF K > 1 THEN 
FOR II = 1 TO K – 1 STEP 2 
   W (II) = 4 
   W (II + 1) = 2 
NEXT II 
END IF 
W (K) = 1 
SUM = 0 
FOR II = 0 TO K 
   SUM = SUM + Y (II)  W(II) 
NEXT II 
     SUM = SUM / 3 
     A (BF, J, K) = J * RA * SUM 
NEXT K 
NEXT J 
 
        REM 6      P (AF, B) 
FOR I = B0 TO BF + 1 STEP – 1 
   A (AF, I, 0) = 0 
   FOR K = 1 TO TT 
   FOR X = 0 TO K 
        Y (X) = A(I, AF + 1, X) 
        NEXT X 
        REM CALCULATE THE WEIGHT 
                 W(0) = 1 
                  IF K > 1 THEN 
                  FOR II = 1 TO K – 1 STEP 2 
                      W(II) = 4 
                      W(II +1) = 2 
                 NEXT II 
                 END IF 
              W (K) =1 
              SUM = 0 
              FOR II = 0 TO K 
               SUM = SUM + Y(II) * W(II) 
              NEXT II 
         SUM = SUM /3 
         A(I, AF, K) = I * RB * SUM 
    NEXT K 
    NEXT I 
REM PRINT 
                         FOR K = 0 TO TT 
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                         A1 = 0 
                FOR J = B0 TO BF STEP – 1 
                     FOR I = A0 TO AF STEP -1 
                     A1 = A1 + A(J, I, K) 
                NEXT I 
                      NEXT J 
                      PRINT A1: INPUT YY                NEXT K 


