استخدام طريقة رونج ـــ كوتا " Runge - Kutta" في ايجاد الحل العددي لمنظومة الانتظار (C2 / C1 /2/3

محتوى المقالة الرئيسي

م.د. داود سلمان رحيم

الملخص

        يمكن التوصل الى حالة الاستقرار ( Steady state) بسهولة عن طريق الحلول التحليلية لانظمة الانتظار (M/M/m/N,M/M/m/1) وذلك عندما يكون التوزيع الاحتمالي لاوقات الوصول البيني بين زبون واخر واوقات الخدمة لهذة الانظمة هو التوزيع الاسي (Exponential Distribution) ،وان هذه الانظمة هي الشائعة في اغلب كتب صفوف الانتظار ، ولكن عندما يكون التوزيع الاحتمالي لاوقات الوصول البيني واوقات الخدمة غير اسي (Non-Exponentially) فان الوصول الى حالة الاستقرار عن طريق الحلول التحليلية يكون امراً معقداً مثال ذلك الانظمة(Ck /CL/m/n ,Ck/CL/1/N , M/CL/m/n) وغيرها من الانظمة ، وذلك بسبب كثرة الاطوار التي يمر بها الزبون في كل محطة سواء كانت في مرحلة الوصول او الخدمة.


                                                                                           


    لذلك في هذا البحث تم استخدام طريقة رياضية (رونج ــ كوتا ذات المرتبة الرابعة) في ايجاد الحل العددي لنموذج الانتظار (C2/C1 /2/3) وذلك من خلال ايجاد مصفوفة معدل الانتقال ثم كتابة المعادلات التفاضلية وبالتالي تم اعداد برنامج حاسوبي لحل هذة المعادلات.


 

تفاصيل المقالة

القسم
بحـــــــوث العــــــدد